The Ability of Soil Pore Network Metrics to Predict Redox Dynamics is Scale Dependent

Author:

Wanzek Thomas,Keiluweit Marco,Varga TamasORCID,Lindsley Adam,Nico Peter S.,Fendorf Scott,Kleber Markus

Abstract

Variations in microbial community structure and metabolic efficiency are governed in part by oxygen availability, which is a function of water content, diffusion distance, and oxygen demand; for this reason, the volume, connectivity, and geometry of soil pores may exert primary controls on spatial metabolic diversity in soil. Here, we combine quantitative pore network metrics derived from X-ray computed tomography (XCT) with measurements of electromotive potentials to assess how the metabolic status of soil depends on variations of the overall pore network architecture. Contrasting pore network architectures were generated using a Mollisol—A horizon, and compared to intact control samples from the same soil. Mesocosms from each structural treatment were instrumented with Pt-electrodes to record available energy dynamics during a regimen of varying moisture conditions. We found that volume-based XCT-metrics were more frequently correlated with metrics describing changes in available energy than medial-axis XCT-metrics. An abundance of significant correlations between pore network metrics and available energy parameters was not only a function of pore architecture, but also of the dimensions of the sub-sample chosen for XCT analysis. Pore network metrics had the greatest power to statistically explain changes in available energy in the smallest volumes analyzed. Our work underscores the importance of scale in observations of natural systems.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3