Verification of the Solid–Liquid Separation of Waterlogged Reduced Soil via a Centrifugal Filtration Method

Author:

Saha Shatabdi1,Watanabe Kumi2,Makino Tomoyuki1,Kanno Hitoshi1ORCID,Kimura Kazuhiko3,Yamasaki Shin-Ichi4

Affiliation:

1. Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan

2. Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan

3. School of Food, Agriculture and Environmental Sciences, Miyagi University, Sendai 981-3298, Japan

4. Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan

Abstract

The efficient separation of solid and liquid phases of soil under reductive conditions is of the utmost importance to study soil chemistry and to predict the mobility and bioavailability of nutrients and toxic contaminants in waterlogged reduced soils (WRSs). However, there is no established method for efficiently separating the solid and liquid phases of WRS within a short time while maintaining its reductive conditions. This study aimed to verify the applicability of a simple centrifugal filtration method (CFM) for the efficient separation of solid and liquid phases of a WRS and examine the CFM-extracted soil solution to confirm that the reductive condition was maintained during the solid–liquid separation process. Incubation experiments were performed under reductive conditions with or without ethanol/molasses used as additional organic material (OM), while the soil solution was collected by both a suction method and CFM at different centrifugation speeds (700, 2760, and 11,000 rpm) and times (1–7 min). The results showed that the soil pH increased with time while the Eh decreased, indicating that its reducing state was enhanced during the incubation experiments. The addition of OM promoted the reductive conditions in the first days of the experiments. Centrifugation speed, rather than time, was found to be the key to extract the maximum amount of soil solution, while a higher centrifugation speed (11,000 rpm), which represents the permanent wilting point, was found to be most effective for extracting the maximum amount of soil solution. The results exhibited no significant difference in solute (As, Fe(II), and Mn) concentrations when varying amounts of CFM-extracted soil solution were measured. The statistical analysis also indicated no significant (p > 0.05) difference between the solute concentrations in the CFM-extracted soil solution and the solute concentrations in the soil solution extracted by the suction method, confirming that the reductive condition was maintained during solid–liquid separation by CFM. This study suggests that CFM operating at a higher centrifugation speed could potentially be employed as a simple and highly effective technique to efficiently separate the solid and liquid phases of WRS (sandy clay loam) within a short time while maintaining its reductive conditions.

Funder

Project of Integrated Compost Science (PICS), Tohoku University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3