Phosphate Sorption onto Structured Soil

Author:

Saki HerminORCID,Liu HaojieORCID,Lennartz BerndORCID

Abstract

Soil–phosphorus interactions are frequently studied employing the slurry technique, in which soil samples are intensively mixed with phosphate solutions of various concentrations. The result of such experiments is a “phosphate sorption potential” because the thorough mixing of soil and phosphate solution as obtained by overhead or horizontal shaking of the slurry would probably not occur under natural conditions, especially if the soil is structured. Here, we wanted to test the impact of soil structure on phosphorus (P) removal from aqueous solution. Soil aggregates of a defined size class were prepared by carefully sieving the soil. The soil aggregates were individually wrapped in an inert fabric and placed on a sieve, which was lowered into a basin containing a phosphate solution of a given concentration. The decrease of the phosphate solution concentration with time was registered at fixed intervals, and adsorbed amounts were quantified by differences between initial concentrations and concentrations at the time of sampling. Pre-tests on fine earth revealed that sorption was more pronounced in the classical slurry batch experiment than in the approach used in this study. Differences between methods were more pronounced at lower initial phosphate concentrations. The increase in P sorption in the classical batch experiment continued over 24 h to 140 mg kg−1, while the adsorbed P amount remained constant (64 mg kg−1) after 6 h in the diffusion experiment. Interestingly, it was observed that the sorption onto soil aggregates was elevated as compared to unstructured fine earth. The sorption capacity of aggregates was approximately one third higher than that of the fine earth samples according to optimized Freundlich adsorption coefficients. This was unexpected since it was assumed that the soil surface area available for sorption processes is greater or at least far more accessible if the unstructured fine earth is exposed to the phosphate solution. We conclude that if the inner pore space of soil aggregates is readily accessible and diffusion is not hindered, the overall retention capacity of intact aggregates might be higher than that of the disturbed soil because the intra-aggregate pore space can accommodate a certain fraction of phosphate in addition to the adsorbed amount at particle surfaces. The presented experimental approach allows for studying sorption processes in well-structured and fine earth in conditions that perform better compared to the natural situation. Additional testing of the method for different soil types is advisable.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3