Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture

Author:

Dhawale Nandkishor M.,Adamchuk Viacheslav I.ORCID,Prasher Shiv O.,Viscarra Rossel Raphael A.

Abstract

Measuring soil texture and soil organic matter (SOM) is essential given the way they affect the availability of crop nutrients and water during the growing season. Among the different proximal soil sensing (PSS) technologies, diffuse reflectance spectroscopy (DRS) has been deployed to conduct rapid soil measurements in situ. This technique is indirect and, therefore, requires site- and data-specific calibration. The quality of soil spectra is affected by the level of soil preparation and can be accessed through the repeatability (precision) and predictability (accuracy) of unbiased measurements and their combinations. The aim of this research was twofold: First, to develop a novel method to improve data processing, focusing on the reproducibility of individual soil reflectance spectral elements of the visible and near-infrared (vis–NIR) kind, obtained using a commercial portable soil profiling tool, and their direct link with a selected set of soil attributes. Second, to assess both the precision and accuracy of the vis–NIR hyperspectral soil reflectance measurements and their derivatives, while predicting the percentages of sand, clay and SOM content, in situ as well as in laboratory conditions. Nineteen locations in three agricultural fields were identified to represent an extensive range of soils, varying from sand to clay loam. All measurements were repeated three times and a ratio spread over error (RSE) was used as the main indicator of the ability of each spectral parameter to distinguish among field locations with different soil attributes. Both simple linear regression (SLR) and partial least squares regression (PLSR) models were used to define the predictability of % SOM, % sand, and % clay. The results indicated that when using a SLR, the standard error of prediction (SEP) for sand was about 10–12%, with no significant difference between in situ and ex situ measurements. The percentage of clay, on the other hand, had 3–4% SEP and 1–2% measurement precision (MP), indicating both the reproducibility of the spectra and the ability of a SLR to accurately predict clay. The SEP for SOM was only a quarter lower than the standard deviation of laboratory measurements, indicating that SLR is not an appropriate model for this soil property for the given set of soils. In addition, the MPs of around 2–4% indicated relatively strong spectra reproducibility, which indicated the need for more expanded models. This was apparent since the SEP of PLSR was always 2–3 times smaller than that of SLR. However, the relatively small number of test locations limited the ability to develop widely applicable calibration models. The most important finding in this study is that the majority of vis–NIR spectral measurements were sufficiently reproducible to be considered for distinguishing among diverse soil samples, while certain parts of the spectra indicate the capability to achieve this at α = 0.05. Therefore, the innovative methodology of evaluating both the precision and accuracy of DRS measurements will help future developers evaluate the robustness and applicability of any PSS instrument.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3