Vertical Distribution of Carbon and Nitrogen in Pastures Fertilized with Broiler Litter or Mineral Fertilizer with Two Drainage Classes

Author:

Subedi Anish1,Franklin Dorcas1,Cabrera Miguel1,Espinoza Natalia1,Gaur Nandita1ORCID,Pederson Dee2,Stewart Lawton1,Westmoreland Chad1

Affiliation:

1. Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA

2. GA USDA-Natural Resources Conservation Service, Athens, GA 30601, USA

Abstract

Nitrogen cycling in pasture soils differing in drainage characteristics and fertilization legacy needs more research to determine efficient nutrient management strategies. This study compared differences in nitrate (NO3−), ammonium (NH4+), inorganic N (IN = NO3− + NH4+), potentially mineralizable nitrogen (PMN), loss-on-ignition carbon (C), and soil pH in 10, 0.7 ha pastures in Eatonton, Georgia, historically fertilized with the same amount of N as either broiler litter (BL; >15 years, 6 pastures) or mineral fertilizer (Min; 4 pastures). We sampled to 90 cm (0–5, 5–10, 10–20, 20–40, 40–60, and 60–90 cm) on a 20 m grid. An analysis of variance indicated that below 5 cm BL pastures had significantly greater amounts of NO3−, IN, PMN, and soil pH compared to Min pastures. Comparisons of drainage classes (well drained~WD, moderately well drained~MWD, and somewhat-poorly drained~SPD) for each BL and Min were analyzed using linear regression for C:IN, C:PMN, pH: NO3−, and pH: NH4+ with all depths combined. In MWD soils, BL had 0.1 and 0.2 mg N kg−1 greater PMN and IN, respectively, for each unit increase in C. In WD soils NO3− decreased in BL by 7.4 and in Min by 12.1 mg N kg−1, while in MWD soils, this level decreased in BL by 7.8 and in Min by 4.5 mg N kg−1 for each pH unit. Five years after N fertilization stopped, BL soils have retained more inorganic N but are losing more NO3− at a greater rate in the MWD soils when all depths are considered. These losses are a combination of plant uptake, emissions, runoff and leaching. While more research is needed, these results strongly suggest the need to design N fertilization practices with drainage class and fertilization legacy in mind to improve N-use efficiency.

Funder

College of Agricultural and Environmental Sciences, University of Georgia

Publisher

MDPI AG

Reference38 articles.

1. Nitrogen budget for fescue pastures fertilized with broiler litter in major land resource areas of the southeastern US;Marshall;Nutr. Cycl. Agroecosystems,2001

2. Nutrient characteristics of poultry manure and litter;Ashworth;Anim. Manure Prod. Charact. Environ. Concerns Manag.,2020

3. Impact of long-term land application of broiler litter on environmentally related soil properties;Kingery;J. Environ. Qual.,1994

4. United States Department of Agriculture, NASS Southern Region (2024, June 13). Poultry—Production and Value. 2023 Summary, Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/m039k491c/b2775j31b/9k4213149/plva0424.pdf.

5. Effects of long-term annual inputs of straw and organic manure on plant N uptake and soil N fluxes;Elsgaard;Soil Use Manag.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3