Abstract
Watershed recovery from long-term acidification in the northeastern U.S. has been characterized by an increase in the influx of dissolved organic matter (DOM) into surface waters. Increases in carbon quantity and shifts to more aromatic and “colored” OM has impacted downstream lakes by altering thermal stratification, nutrient cycling and food web dynamics. Here, we used fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) to model predominant carbon quality fractions and their seasonal changes within surface waters along landscape positions of Arbutus Lake watershed in the Adirondack region of NY, USA. All DOM components were terrestrial in origin, however their relative fractions varied throughout the watershed. DOM in headwater streams contained high fractions of recalcitrant (~43%) and microbial reprocessed humic-like OM (~33%), sourced from upland forest soils. Wetlands above the lake inlet contributed higher fractions of high molecular weight, plant-like organic matter (~30%), increasing dissolved organic carbon (DOC) concentrations observed at the lake inlet (492.5 mg L−1). At the lake outlet, these terrestrial fractions decreased significantly during summer months leading to a subsequent increase in reprocessed OM likely through increased microbial metabolism and photolysis. Comparisons of specific ultraviolet absorbance between this study and previous studies at Arbutus Lake show that OM draining upland streams (3.1 L·mg C−1 m−1) and wetland (4.1 L·mg C−1 m−1) is now more aromatic and thus more highly colored than conditions a decade ago. These findings provide insight into the emerging role that watersheds recovering from acidification play on downstream water quality.
Subject
Earth-Surface Processes,Soil Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献