Soil Carbon Change Due to Land Conversion to Grassland in a Semi-Arid Environment

Author:

Yellajosula Gayatri,Cihacek Larry,Faller Tim,Schauer Christopher

Abstract

A 5-year study evaluated the change in the quantity of soil total C (STC), soil organic C (SOC), and soil inorganic C (SIC) stored in the surface 60 cm of the soil profile on two adjacent blocks of land with a long-term history of cropping (CH) or undisturbed grassland (NH) on similar soil types between 1999 and 2004. The NH area was tilled and a grass-legume species mix was seeded into plots on both the NH and the CH areas. Selected plots of restored grass were established so they could be grazed (GG) by livestock while other plots were left ungrazed (UG). Original undisturbed (and ungrazed) grassland plots within the NH area were used as a control treatment. Initially, STC and SOC in CH were lower than NH when compared under the semi-arid environmental conditions found in southwestern North Dakota. Over the study period, the undisturbed grass control plots had increases in STC and SOC levels in the soil profile of 3.90 kg·m−2 and 3.34 kg·m−2, respectively. Restored grass on the NH area with grazing showed increases in STC and SOC values of 2.11 and 1.26 kg·m−2, respectively, while without grazing, profile STC and SOC had values of 3.80 and 3.28 kg·m−2, respectively. Restored grass on the CH area showed increases in profile STC and SOC values of 0.55 and 1.96 kg·m−2, respectively, for the grazed plots and 0.78 and 2.11 kg·m−2, respectively, when left ungrazed. Soil inorganic C, though present in the soils, did not significantly change during the study. The lower C accumulation in the CH plots may be due to a lag time in the establishment of mycorrhizal associations with the seeded species, the inoculums of which were already present in the NH soils. Changes in STC were likely due to changes in water relationships in the soil profile where management changes affected water infiltration and its movement causing leaching of SIC below the 60 cm depth evaluated. Soils under undisturbed grassland continue to accumulate carbon while soils of the disturbed grassland or cropped prior to re-establishing grass showed losses that occurred due to either accumulating C at a lower rate or perhaps to C loss during the initial establishment period (1–2 years).

Funder

U.S. Department of Agriculture

U.S. Department of Energy

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

Reference41 articles.

1. ACHIEVING SOIL CARBON SEQUESTRATION IN THE UNITED STATES: A CHALLENGE TO THE POLICY MAKERS

2. Estimated soil organic carbon losses from long-term crop-fallow in the northern Great Plains of the USA;Cihacek,1995

3. CHANGES IN SOIL CARBON STORAGE AFTER CULTIVATION

4. Root systems-the forgotten component of pastures;Davidson,1978

5. Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO"2 to the Atmosphere

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3