Adsorption, Desorption and Bioavailability of Tungstate in Mediterranean Soils

Author:

Petruzzelli Gianniantonio,Pedron Francesca

Abstract

The adsorption and desorption process of the tungstate ion was studied in three soils characteristic of the Mediterranean area, with particularly reference to bioavailability pathways. In the three soils examined, the tungstate adsorption was described by a Langmuir-type equation, while the desorption process showed that not all the adsorbed tungstate was released, probably due to the formation of different bonds with the adsorbing soil surfaces. The pH was found to be the main soil property that regulates the adsorption/desorption: The maximum adsorption occurred in the soil with the acidic pH, and the maximum desorption in the most basic soil. In addition, the organic matter content played a fundamental role in the adsorption of tungstate by soils, being positively correlated with the maximum of adsorption. These results indicate that the lowest bioavailability should be expected in the acidic soil characterized by the highest adsorption capacity. This is confirmed by the trend of the maximum buffer capacity (MBC) of soils which is inversely related to bioavailability, and was the highest in the acidic soil and the lowest in the most basic soil. Our data could contribute in drafting environmental regulations for tungsten that are currently lacking for Mediterranean soils.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3