Stratified Soil Sampling Improves Predictions of P Concentration in Surface Runoff and Tile Discharge

Author:

Osterholz William,King Kevin,Williams Mark,Hanrahan Brittany,Duncan Emily

Abstract

Phosphorus (P) stratification in agricultural soils has been proposed to increase the risk of P loss to surface waters. Stratified soil sampling that assesses soil test P (STP) in a shallow soil horizon may improve predictions of P concentrations in surface and subsurface discharge compared to single depth agronomic soil sampling. However, the utility of stratified sampling efforts for enhancing understanding of environmental P losses remains uncertain. In this study, we examined the potential benefit of integrating stratified sampling into existing agronomic soil testing efforts for predicting P concentrations in discharge from 39 crop fields in NW Ohio, USA. Edge-of-field (EoF) dissolved reactive P (DRP) and total P (TP) flow-weighted mean concentrations in surface runoff and tile drainage were positively related to soil test P (STP) measured in both the agronomic sampling depth (0–20 cm) and shallow sampling depth (0–5 cm). Tile and surface DRP and TP were more closely related to shallow depth STP than agronomic STP, as indicated by regression models with greater coefficients of determination (R2) and lesser root-mean square errors (RMSE). A multiple regression model including the agronomic STP and P stratification ratio (Pstrat) provided the best model fit for DRP in surface runoff and tile drainage and TP in tile drainage. Additionally, STP often varied significantly between soil sampling events at individual sites and these differences were only partially explained by management practices, highlighting the challenge of assessing STP at the field scale. Overall, the linkages between shallow STP and P transport persisted over time across agricultural fields and incorporating stratified soil sampling approaches showed potential for improving predictions of P concentrations in surface runoff and tile drainage.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3