Towards ML-Based Diagnostics of Laser–Plasma Interactions

Author:

Rodimkov YuryORCID,Bhadoria Shikha,Volokitin ValentinORCID,Efimenko Evgeny,Polovinkin Alexey,Blackburn Thomas,Marklund Mattias,Gonoskov ArkadyORCID,Meyerov IosifORCID

Abstract

The power of machine learning (ML) in feature identification can be harnessed for determining quantities in experiments that are difficult to measure directly. However, if an ML model is trained on simulated data, rather than experimental results, the differences between the two can pose an obstacle to reliable data extraction. Here we report on the development of ML-based diagnostics for experiments on high-intensity laser–matter interactions. With the intention to accentuate robust, physics-governed features, the presence of which is tolerant to such differences, we test the application of principal component analysis, data augmentation and training with data that has superimposed noise of gradually increasing amplitude. Using synthetic data of simulated experiments, we identify that the approach based on the noise of increasing amplitude yields the most accurate ML models and thus is likely to be useful in similar projects on ML-based diagnostics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3