Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring

Author:

Attivissimo Filippo1ORCID,De Palma Luisa1ORCID,Di Nisio Attilio1ORCID,Scarpetta Marco1ORCID,Lanzolla Anna Maria Lucia1

Affiliation:

1. Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy

Abstract

In this paper, new features relevant to blood pressure (BP) estimation using photoplethysmography (PPG) are presented. A total of 195 features, including the proposed ones and those already known in the literature, have been calculated on a set composed of 50,000 pulses from 1080 different patients. Three feature selection methods, namely Correlation-based Feature Selection (CFS), RReliefF and Minimum Redundancy Maximum Relevance (MRMR), have then been applied to identify the most significant features for BP estimation. Some of these features have been extracted through a novel PPG signal enhancement method based on the use of the Maximal Overlap Discrete Wavelet Transform (MODWT). As a matter of fact, the enhanced signal leads to a reliable identification of the characteristic points of the PPG signal (e.g., systolic, diastolic and dicrotic notch points) by simple means, obtaining results comparable with those from purposely defined algorithms. For systolic points, mean and std of errors computed as the difference between the locations obtained using a purposely defined already known algorithm and those using the MODWT enhancement are, respectively, 0.0097 s and 0.0202 s; for diastolic points they are, respectively, 0.0441 s and 0.0486 s; for dicrotic notch points they are 0.0458 s and 0.0896 s. Hence, this study leads to the selection of several new features from the MODWT enhanced signal on every single pulse extracted from PPG signals, in addition to features already known in the literature. These features can be employed to train machine learning (ML) models useful for estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) in a non-invasive way, which is suitable for telemedicine health-care monitoring.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3