Abstract
The spatial distribution patterns of salt marsh plant communities and their biomass provide useful information for monitoring the stability and productivity of coastal salt marsh ecosystems in space and time. However, the spatial patterns of plant vegetation and its aboveground biomass (AGB) in a coastal salt marsh remain unclear. This study mapped the spatial distributions of salt marsh communities and their AGB based on image and LiDAR data acquired by an unmanned aerial vehicle (UAV) in the Yangtze River Estuary. The differences in vegetation structure and AGB at regions located at different distances from tidal creeks were also tested. The results show that biomass estimated through a random forest model is in good agreement (R2 = 0.90, RMSE = 0.1 kg m−2) with field-measured biomass. The results indicate that an AGB estimation model based on UAV-LiDAR data and a random forest algorithm with high accuracy was useful for efficiently estimating the AGB of salt marsh vegetation. Moreover, for Phragmites australis, both its proportion and AGB increased, while the proportion and AGB of Scirpus mariqueter, Carex scabrifolia, and Imperata cylindrica decreased with increasing distance from tidal creeks. Our study demonstrates that tidal creeks are important for shaping spatial patterns of coastal salt marsh communities by altering soil salinity and soil moisture, so reasonable and scientific measures should be taken to manage and protect coastal ecosystems.
Funder
Natural Science Foundation of China
Scientific Research Program of Shanghai Science and Technology Commission
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献