Assessing the Impacts of Tidal Creeks on the Spatial Patterns of Coastal Salt Marsh Vegetation and Its Aboveground Biomass

Author:

Tang Ya-Nan,Ma JunORCID,Xu Jing-Xian,Wu Wan-Ben,Wang Yuan-Chen,Guo Hai-Qiang

Abstract

The spatial distribution patterns of salt marsh plant communities and their biomass provide useful information for monitoring the stability and productivity of coastal salt marsh ecosystems in space and time. However, the spatial patterns of plant vegetation and its aboveground biomass (AGB) in a coastal salt marsh remain unclear. This study mapped the spatial distributions of salt marsh communities and their AGB based on image and LiDAR data acquired by an unmanned aerial vehicle (UAV) in the Yangtze River Estuary. The differences in vegetation structure and AGB at regions located at different distances from tidal creeks were also tested. The results show that biomass estimated through a random forest model is in good agreement (R2 = 0.90, RMSE = 0.1 kg m−2) with field-measured biomass. The results indicate that an AGB estimation model based on UAV-LiDAR data and a random forest algorithm with high accuracy was useful for efficiently estimating the AGB of salt marsh vegetation. Moreover, for Phragmites australis, both its proportion and AGB increased, while the proportion and AGB of Scirpus mariqueter, Carex scabrifolia, and Imperata cylindrica decreased with increasing distance from tidal creeks. Our study demonstrates that tidal creeks are important for shaping spatial patterns of coastal salt marsh communities by altering soil salinity and soil moisture, so reasonable and scientific measures should be taken to manage and protect coastal ecosystems.

Funder

Natural Science Foundation of China

Scientific Research Program of Shanghai Science and Technology Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3