Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia

Author:

Yuan JingORCID,Chen JiquanORCID,Sciusco PietroORCID,Kolluru VenkateshORCID,Saraf Sakshi,John Ranjeet,Ochirbat BatkhishigORCID

Abstract

As the two largest landlocked countries, Kazakhstan and Mongolia have similar biophysical conditions and socioeconomic roots in the former Soviet Union. Our objective is to investigate the direction, extent, and spatial variation of land cover change at three administrative levels over three decades (1990–2020). We selected three provinces from each country (Aktobe, Akmola, and Almaty province in Kazakhstan, and Arkhangai, Tov, and Dornod in Mongolia) to classify the land cover into forest, grassland, cropland, barren, and water. Altogether, 6964 Landsat images were used in pixel-based classification method with random forest model for image processing. Six thousand training data points (300 training points × 5 classes × 4 periods) for each province were collected for classification and change detection. Land cover changes at decadal and over the entire study period for five land cover classes were quantified at the country, provincial, and county level. High classification accuracy indicates localized land cover classification have an edge over the latest global land cover product and reveal fine differences in landscape composition. The vast steppe landscapes in these two countries are dominated by grasslands of 91.5% for Dornod in Mongolia and 74.7% for Aktobe in Kazakhstan during the 30-year study period. The most common land cover conversion was grassland to cropland. The cyclic land cover conversions between grassland and cropland reflect the impacts of the Soviet Union’s largest reclamation campaign of the 20th century in Kazakhstan and the Atar-3 agriculture re-development in Mongolia. Kazakhstan experienced a higher rate of land cover change over a larger extent of land area than Mongolia. The spatial distribution of land use intensity indicates that land use hotspots are largely influenced by policy and its shifts. Future research based on these large-scale land use and land cover changes should be focused the corresponding ecosystem and society functions.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3