All-Sky 1 km MODIS Land Surface Temperature Reconstruction Considering Cloud Effects Based on Machine Learning

Author:

Cho DongjinORCID,Bae Dukwon,Yoo CheolheeORCID,Im JunghoORCID,Lee YeonsuORCID,Lee SiwooORCID

Abstract

A high spatio-temporal resolution land surface temperature (LST) is necessary for various research fields because LST plays a crucial role in the energy exchange between the atmosphere and the ground surface. The moderate-resolution imaging spectroradiometer (MODIS) LST has been widely used, but it is not available under cloudy conditions. This study proposed a novel approach for reconstructing all-sky 1 km MODIS LST in South Korea during the summer seasons using various data sources, considering the cloud effects on LST. In South Korea, a Local Data Assimilation and Prediction System (LDAPS) with a relatively high spatial resolution of 1.5 km has been operated since 2013. The LDAPS model’s analysis data, binary MODIS cloud cover, and auxiliary data were used as input variables, while MODIS LST and cloudy-sky in situ LST were used together as target variables based on the light gradient boosting machine (LightGBM) approach. As a result of spatial five-fold cross-validation using MODIS LST, the proposed model had a coefficient of determination (R2) of 0.89–0.91 with a root mean square error (RMSE) of 1.11–1.39 °C during the daytime, and an R2 of 0.96–0.97 with an RMSE of 0.59–0.60 °C at nighttime. In addition, the reconstructed LST under the cloud was evaluated using leave-one-station-out cross-validation (LOSOCV) using 22 weather stations. From the LOSOCV results under cloudy conditions, the proposed LightGBM model had an R2 of 0.55–0.63 with an RMSE of 2.41–3.00 °C during the daytime, and an R2 of 0.70–0.74 with an RMSE of 1.31–1.36 °C at nighttime. These results indicated that the reconstructed LST has higher accuracy than the LDAPS model. This study also demonstrated that cloud cover information improved the cloudy-sky LST estimation accuracy by adequately reflecting the heterogeneity of the relationship between LST and input variables under clear and cloudy skies. The reconstructed all-sky LST can be used in a variety of research applications including weather monitoring and forecasting.

Funder

Korea Environmental Industry and Technology Institute

Korea Meteorological Administration

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3