Depth Inversion from Wave Frequencies in Temporally Augmented Satellite Video

Author:

Gawehn MatthijsORCID,Almar RafaelORCID,Bergsma Erwin W. J.ORCID,de Vries Sierd,Aarninkhof Stefan

Abstract

Optical satellite images of the nearshore water surface offer the possibility to invert water depths and thereby constitute the underlying bathymetry. Depth inversion techniques based on surface wave patterns can handle clear and turbid waters in a variety of global coastal environments. Common depth inversion algorithms require video from shore-based camera stations, UAVs or Xband-radars with a typical duration of minutes and at framerates of 1–2 fps to find relevant wave frequencies. These requirements are often not met by satellite imagery. In this paper, satellite imagery is augmented from a sequence of 12 images of Capbreton, France, collected over a period of ∼1.5 min at a framerate of 1/8 fps by the Pleiades satellite, to a pseudo-video with a framerate of 1 fps. For this purpose, a recently developed method is used, which considers spatial pathways of propagating waves for temporal video reconstruction. The augmented video is subsequently processed with a frequency-based depth inversion algorithm that works largely unsupervised and is openly available. The resulting depth estimates approximate ground truth with an overall depth bias of −0.9 m and an interquartile range of depth errors of 5.1 m. The acquired accuracy is sufficiently high to correctly predict wave heights over the shoreface with a numerical wave model and to find hotspots where wave refraction leads to focusing of wave energy that has potential implications for coastal hazard assessments. A more detailed depth inversion analysis of the nearshore region furthermore demonstrates the possibility to detect sandbars. The combination of image augmentation with a frequency-based depth inversion method shows potential for broad application to temporally sparse satellite imagery and thereby aids in the effort towards globally available coastal bathymetry data.

Funder

Laboratoire d’Études en Géophysique et Océanographie Spatiales

Stichting ZABAWAS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3