Plant Ontogeny Strongly Influences SO2 Stress Resistance in Landscape Tree Species Leaf Functional Traits

Author:

Han Aru,Bao Yongbin,Liu Xingpeng,Tong Zhijun,Qing Song,Bao Yuhai,Zhang JiquanORCID

Abstract

Sulfur dioxide (SO2) is a major atmospheric pollutant and abiotic stressor. Although physiological studies on abiotic stressors have focused on fully expanded leaves, the resistance of leaf functional traits to SO2 during individual leaf development has not been studied. Thus, this study aimed to conduct SO2 static artificial fumigation experiments to evaluate changes in leaf functional traits and resistance to SO2 for three common landscape tree species (Syringa oblata Lindl. (S. oblata), Prunus cerasifera var. atropurpurea Jack. (P. cerasifera), and Ulmus pumila ‘Jinye’ (U. pumila)) in Changchun City and ontogeny under SO2 stress. Samples were collected on three days in autumn (1 September, 9 September, and 19 September 2019) for two different leaf stages (10 days and 40 days). In addition, remote sensing data were combined to explore the resistance mechanisms of broadleaf forests to different SO2 concentration classes during different seasons on a large scale. The results showed that the chlorophyll content, leaf temperature, green-peak reflectance, and Fv/Fm (maximal photochemical efficiency) at 10 days were significantly lower than that at 40 days, regardless of sampling date or SO2 concentration. Additionally, in general the SO2 resistance for 10 days leaves was consistently smaller than those for 40 days leaves in 3 tree species. On 9 September, 10 days leaves of the three tree species showed different leaf resistance performances under different SO2 concentrations in the order: P. cerasifera > S. oblata > U. pumila. Lastly, the extent of resistance decreased with increasing ρ(SO2) classes in different seasons, and the SO2 resistance was affected by season. We conclude that mature leaves are more resistant to SO2 stress than young leaves are. These results will provide scientific guidance on artificial plant community construction and prevention of future vegetation degradation.

Funder

National Natural Science Foundation of China

International (Regional) cooperation and Exchange Programs of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3