Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico

Author:

Vallarta-Serrano Stephany Isabel1ORCID,Galindo-Muro Ana Bricia1ORCID,Cespi Riccardo2ORCID,Bustamante-Bello Rogelio1ORCID

Affiliation:

1. School of Engineering and Sciences, Tecnologico de Monterrey, Mexico City 14380, Mexico

2. School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico

Abstract

Cities consume most of the energy used worldwide and are the largest emitters of greenhouse gases (GHGs) that cause global warming, mainly from the road transport sector. In megacities, the light vehicle fleet is responsible for most of the emissions in the sector. Among this fleet, light commercial vehicles (CVs), which have grown to support instant delivery services demand, are also responsible for emissions and traffic congestion. Due to the urgency to reduce transport impacts, emission mitigation strategies are required. Aligned with this aim, this article evaluates GHG emissions along the entire process of energy production, called the operating trajectory, and also known as Well-To-Wheel (WTW), in four combinations of transportation modes for last-mile delivery services, using light CVs, such as electric or diesel vans, and electric cargo bikes (E-bikes). The analysis is firstly conducted in a local area of Mexico City and subsequently compared to other countries around the world. In this respect, the main result of this article shows that in the case study conducted in the Metropolitan Zone of the Valley of Mexico, the energy consumption of a given route for an electric van combined with E-bikes generates 24% less GHG emissions than a diesel van combined with E-bikes. Therefore, the achievement of effective mitigation strategies for GHG emissions reduction through vehicle electrification requires WTW emission analysis and quantification, optimal route design, a combination of sustainable transport modes and clean energy generation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3