Predictions for Bending Strain at the Tower Bottom of Offshore Wind Turbine Based on the LSTM Model

Author:

Lee Songjune1,Kang Seungjin1,Lee Gwang-Se1

Affiliation:

1. Wind Energy Research Team, Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER), 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea

Abstract

In recent years, the demand and requirement for renewable energy have significantly increased due to concerns regarding energy security and the climate crisis. This has led to a significant focus on wind power generation. As the deployment of wind turbines continues to rise, there is a growing need to assess their lifespan and improve their stability. Access to accurate load data is crucial for enhancing safety and conducting remaining life assessments of wind turbines. However, maintaining and ensuring the reliability of measurement systems for long-term load data accumulation, stability assessments, and residual life evaluations can be challenging. As a result, numerous studies have been conducted on load prediction for wind turbines. However, existing load prediction models based on 10 min statistical data cannot adequately capture the short-term load variations experienced by wind turbines. Therefore, it is essential to develop models capable of predicting load with a high temporal resolution to enhance reliability, especially with the increasing scale and development of floating wind turbines. In this paper, we developed prediction models with a 50 Hz resolution for the bending strain at the tower bottom of offshore wind turbines by combining SCADA data and acceleration data using machine learning techniques and analyzed the results. The load prediction models demonstrated high accuracy, with a mean absolute percentage error below 4%.

Funder

Ministry of Trade, Industry & Energy, Republic of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3