Combustion Chemistry of Unsaturated Hydrocarbons Mixed with NOx: A Review with a Focus on Their Interactions

Author:

Tang Ruoyue1,Cheng Song12

Affiliation:

1. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong

2. Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong

Abstract

Unsaturated hydrocarbons are major components of transportation fuels, combustion intermediates, and unburnt exhaust emissions. Conversely, NOx species are minor species present in the residual and exhaust gases of gasoline-fueled engines and gas turbines. Their co-existence in transportation engines is quite common, particularly with exhaust gas recirculation, which can greatly influence engine combustion characteristics. Therefore, this paper presents a review on the combustion chemistry of unsaturated hydrocarbons and NOx mixtures, with a focus on their chemical kinetic interactions. First, a comprehensive overview of fundamental combustion experiments is provided, covering mixtures of C2–C5 unsaturated/oxygenated species (namely alkenes, alkynes, dienes, alcohols, ethers, ketones, and furans) and three major NOx species (namely NO, NO2, and N2O), as well as reactors including jet-stirred reactors, flow reactors, burners, shock tubes, and rapid compression machines. Then, two widely adopted nitrogen chemistry models are evaluated in conjunction with a core chemistry model (i.e., NUIGMech1.1) via detailed chemical kinetic modeling, and the model similarities and differences across broad temperature ranges are highlighted. Thereafter, the unique interconversions between the three major NOx species are presented. In particular, the controversy regarding the pathways governing NO and NO2 conversion is discussed. Following this, the key direct interaction reactions between unsaturated species and NOx species are overviewed. Finally, the distinguishing features of the combustion chemistry for unsaturated hydrocarbon and NOx mixtures are summarized, and recommendations for future research on this topic are highlighted.

Funder

Research Grants Council of the Hong Kong Special Administrative Region, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3