Liquid CO2 and Liquid Air Energy Storage Systems: A Thermodynamic Analysis

Author:

Marchionni Matteo1,Cipollone Roberto2ORCID

Affiliation:

1. Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo, 2, 09123 Cagliari, Italy

2. Department of Industrial and Information Engineering and Economics, University of L’Aquila, P.le Ernesto Pontieri, 1—Monteluco di Roio, 67100 L’Aquila, Italy

Abstract

Energy storage is a key factor to confer a technological foundation to the concept of energy transition from fossil fuels to renewables. Their solar dependency (direct radiation, wind, biomass, hydro, etc. …) makes storage a requirement to match the supply and demand, with fulfillment being another key factor. Recently, the most attention is directed toward the direct electrical storage inside batteries, probably driven by interest in the transportation sector, which today is the main focus in the transition path. On the contrary, for the generation of electrical energy and, more generally, for industrial sectors whose CO2 emissions are defined as hard-to-abate, electrical storage is not a feasible answer to many political and non-technological concerns. Therefore, other storage methods must be considered to address excess electricity, the most characteristics of which being both the capacity and rate of charging/delivering. Among the efforts under consideration, the liquid storage of gases at ambient conditions is certainly an interesting option. This is the case with air and CO2. The paper focused on the storage of CO2 in liquid form, comparing its performance with those of air liquefaction, which well-studied in the literature. The paper proposed a novel plant layout design for a liquid CO2 energy storage system that can improve the round-trip efficiency by up to 57%. The system was also compared to a liquid air energy storage unit considering a state-of-the-art level of technology for components, showing better efficiency but lower energy density. Finally, a sensitivity analysis was used to discuss the most relevant variables for a plant design. Particular focus was devoted to the discharging time of the plant, one of the most relevant variables that matches the energy demand.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3