Validation of the Eulerian–Eulerian Two-Fluid Method and the RPI Wall Partitioning Model Predictions in OpenFOAM with Respect to the Flow Boiling Characteristics within Conventional Tubes and Micro-Channels

Author:

Vontas Konstantinos1ORCID,Pavarani Marco2,Miché Nicolas1ORCID,Marengo Marco1ORCID,Georgoulas Anastasios1ORCID

Affiliation:

1. Advanced Engineering Centre, School of Architecture Technology and Engineering, University of Brighton, Brighton BN2 4GJ, UK

2. Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43121 Parma, Italy

Abstract

Flow boiling within conventional, mini and micro-scale channels is encountered in a wide range of engineering applications such as nuclear reactors, steam engines and cooling of electronic devices. Due to the high complexity and importance of the boiling process, several numerical and experimental investigations have been conducted for the better understanding of the underpinned physics and heat transfer characteristics. One of the most widely used numerical approaches that can analyse such phenomena is the Eulerian–Eulerian two-fluid method in conjunction with the RPI model. However, according to the current state-of-the-art methods this modelling approach heavily relies on empirical closure relationships derived for conventional channels, limiting its applicability to mini- and micro-scale channels. The present paper aims to give further insights into the applicability of this modelling approach for non-conventional channels. For this purpose, a numerical investigation utilising the Eulerian–Eulerian two-fluid model and the RPI wall heat flux partitioning model in OpenFOAM 8.0 is conducted. Initially the parameters comprising the empirical closure relationships used in the RPI sub-models are tuned against the DEBORA experiments on conventional channels, through an extensive sensitivity analysis. In the second part of the investigation, numerical simulations against flow boiling experiments within micro-channels are performed, utilising the previously optimised and validated model setup. Furthermore the importance of including a bubble coalescence and break-up sub-model to capture parameters such as the radial velocity profiles, is also illustrated. However, when the optimal model setup, in conventional tubes, is used against micro-channel experiments, the need to develop new correlations from data obtained from mini and micro-scale channel studies, not from experimental data on conventional channels, is revealed.

Funder

European Union’s Horizon 2020 research and innovation programme

European Space Agency project ENCOM 4

University of Brighton

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference64 articles.

1. Recent advances in high-flux, two-phase thermal management;Mudawar;J. Therm. Sci. Eng. Appl.,2013

2. Dynamics of vapor bubbles and boiling heat transfer;Forster;AIChE J.,1955

3. Theodore, L.B., Adrienne, S., Lavine, F.P., and Incropera, D.P.D. (2017). Fundamentals of Heat and Mass Transfer, Wiley. [6th ed.].

4. Flow boiling in vertical narrow microchannels of different surface wettability characteristics;Zhou;Int. J. Heat Mass Transf.,2017

5. Review of correlations for subcooled flow boiling heat transfer and assessment of their applicability to water;Fang;Fusion Eng. Des.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3