Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review

Author:

Nazir Shoaib1,Ali Asjad2ORCID,Aftab Abdullah3,Muqeet Hafiz Abdul3ORCID,Mirsaeidi Sohrab4ORCID,Zhang Jian-Min1

Affiliation:

1. College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China

2. Department of Electrical Engineering, University of Engineering and Technology Taxila, Punjab 47050, Pakistan

3. Department of Electrical Engineering Technology, Punjab Tianjin University of Technology, Lahore 54770, Pakistan

4. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

This paper provides a review of the implementation of different materials and how they have impacted the efficiency of solar cells. This work elaborates on all solar generation methods that have been developed in the past and covers disparate technologies that are being implemented in different generations. A review of the characterization and factors involved in these processes are also discussed briefly. Furthermore, the economic, environmental, and technical perspectives related to solar cells have also been expounded. This paper also provides some insights into potential research directions that can be pursued in the field of solar energy. Energy demands are increasing all over the world, and substantial amounts of fossil fuels are currently exhausted all over the world in order to meet those needs, which in turn contaminates our environment; moreover, non-renewable sources of energy are diminishing at higher rates as well. Solar energy is of prime importance in all renewable energy sources as the Sun shines at the Earth for 8 to 10 h on average. Thus, heat can be harnessed to generate electricity, but solar cells are not substantially efficient because the materials used in them are quite costly and waste a considerable amount of energy, mostly as heat, which subsequently reduces the efficiency of the cell and increases the overall price as well. These challenges can be dealt with by designing more efficient, economical systems of storage and manufacturing PV cells with high efficacy. Scientists and engineers are more inclined toward advanced technologies and material manipulation to enhance the efficiency of solar energy and reduce its cost. In this regard, substantial research is being carried out, especially on the structure of materials and advanced materials like nanomaterials and quantum dots. Due to their distinct electromechanical and material properties, carbon-based nanomaterials like carbon nanotubes, graphene, fullerene, and nanohybrids are being employed as the electrodes, transport layers, active layers, or intermediate (interfacial) layers of solar cells in this regard.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3