Author:
Li Qingyu,Lu Laijun,Zhao Quansheng,Hu Shuya
Abstract
Oil shale can produce oil and shale gas by heating the oil shale at 300–500 °C. The high temperature and the release of organic matter can change the physical and mechanical properties of rocks and make the originally tight impervious layer become a permeable layer under in situ exploitation conditions. To realize the potential impact of the in situ exploitation of oil shale on groundwater environments, a series of water–rock interaction experiments under different temperatures was conducted. The results show that, with the increase of the reaction temperature, the anions and cations in the aqueous solution of oil shale, oil shale–ash, and the surrounding rock show different trends, and the release of anions and cations in the oil shale–ash solution is most affected by the ambient temperature. The hydrochemical type of oil shale–ash solution is HCO3-SO4-Na-K at 80 °C and 100 °C, which changes the water quality. The main reasons are that (1) the high temperature (≥80 °C) can promote the dissolution of FeS in oil shale and (2) the porosity of oil shale increases after pyrolysis, making it easier to react with water. This paper is an important supplement to the research on the impact of the in situ exploitation of oil shale on the groundwater environment. Therefore, the impacts of in situ mining on groundwater inorganic minerals should be taken into consideration when evaluating in situ exploitation projects of oil shale.
Funder
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献