Energy-Efficient UAVs Deployment for QoS-Guaranteed VoWiFi Service

Author:

Mayor VicenteORCID,Estepa RafaelORCID,Estepa AntonioORCID,Madinabeitia GermánORCID

Abstract

This paper formulates a new problem for the optimal placement of Unmanned Aerial Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to a set of ground users confined in an open area. Our objective function is constrained by coverage and by VoIP speech quality and minimizes the ratio between the number of UAVs deployed and energy efficiency in UAVs, hence providing the layout that requires fewer UAVs per hour of service. Solutions provide the number and position of UAVs to be deployed, and are found using well-known heuristic search methods such as genetic algorithms (used for the initial deployment of UAVs), or particle swarm optimization (used for the periodical update of the positions). We examine two communication services: (a) one bidirectional VoWiFi channel per user; (b) single broadcast VoWiFi channel for announcements. For these services, we study the results obtained for an increasing number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. Results show that the drone turnover rate is related to both users’ sparsity and the number of users served by each UAV. For the unicast service, the ratio of UAVs per hour of service tends to increase with user sparsity and the power of radio communication represents 14–16% of the total UAV energy consumption depending on ground user density. In large areas, solutions tend to locate UAVs at higher altitudes seeking increased coverage, which increases energy consumption due to hovering. However, in the VoWiFi broadcast communication service, the traffic is scarce, and solutions are mostly constrained only by coverage. This results in fewer UAVs deployed, less total power consumption (between 20% and 75%), and less sensitivity to the number of served users.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3