Abstract
Wastewater contains diverse microbes, and regular microbiological screening at wastewater treatment plants is essential for monitoring the wastewater treatment and protecting environmental health. In this study, a metagenomic approach was used to characterize the microbial communities in the influent and effluent of a conventional domestic sewage treatment plant in the metropolitan city of Jeddah. Bacteria were the prevalent type of microbe in both the influent and effluent, whereas archaea and viruses were each detected at <1% abundance. Greater diversity was observed in effluent bacterial populations compared with influent, despite containing similar major taxa. These taxa consisted primarily of Proteobacteria, followed by Bacteroidetes and Firmicutes. Metagenomic analysis provided broad profiles of 87 pathogenic/opportunistic bacteria belonging to 47 distinct genera in the domestic sewage samples, with most having <1% abundance. The archaea community included 20 methanogenic genera. The virus-associated sequences were classified mainly into the families Myoviridae, Siphoviridae, and Podoviridae. Genes related to resistance to antibiotics and toxic compounds, gram-negative cell wall components, and flagellar motility in prokaryotes identified in metagenomes from both types of samples. This study provides a comprehensive understanding of microbial communities in influent and effluent samples of a conventional domestic sewage treatment plant and suggests that metagenomic analysis is a feasible approach for microbiological monitoring of wastewater treatment.
Funder
King Abdulaziz University
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献