Variation in Ectosymbiont Assemblages Associated with Rock Pigeons (Columba livia) from Coast to Coast in Canada

Author:

Grossi AlexandraORCID,Proctor HeatherORCID

Abstract

When a species colonizes a new area, it has the potential to bring with it an array of smaller-bodied symbionts. Rock Pigeons (Columba livia Gmelin) have colonized most of Canada and are found in almost every urban center. In its native range, C. livia hosts more than a dozen species of ectosymbiotic arthropods, and some of these lice and mites have been reported from Rock Pigeons in the United States. Despite being so abundant and widely distributed, there are only scattered host-symbiont records for rock pigeons in Canada. Here we sample Rock Pigeons from seven locations across Canada from the west to east (a distance of > 4000 km) to increase our knowledge of the distribution of their ectosymbionts. Additionally, because ectosymbiont abundance can be affected by temperature and humidity, we looked at meteorological variables for each location to assess whether they were correlated with ectosymbiont assemblage structure. We found eight species of mites associated with different parts of the host’s integument: the feather dwelling mites Falculifer rostratus (Buchholz), Pterophagus columbae (Sugimoto) and Diplaegidia columbae (Buchholz); the skin mites: Harpyrhynchoides gallowayi Bochkov, OConnor and Klompen, H. columbae (Fain), and Ornithocheyletia hallae Smiley; and the nasal mites Tinaminyssus melloi (Castro) and T. columbae (Crossley). We also found five species of lice: Columbicola columbae (Linnaeus), Campanulotes compar (Burmeister), Coloceras tovornikae Tendeiro, Hohorstiella lata Piaget, and Bonomiella columbae Emerson. All 13 ectosymbiont species were found in the two coastal locations of Vancouver (British Columbia) and Halifax (Nova Scotia). The symbiont species found in all sampling locations were the mites O. hallae, H. gallowayi, T. melloi and T. columbae, and the lice Colu. columbae and Camp. compar. Three local meteorological variables were significantly correlated with mite assemblage structure: annual minimum and maximum temperatures and maximum humidity in the month the pigeon was collected. Two local meteorological variables, annual maximum and average temperatures, were significantly correlated with louse assemblages. Our results suggest that milder climatic conditions may affect richness and assemblage structure of ectosymbiont assemblages associated with Rock Pigeons in Canada.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3