Study on the Combined Mining Scheme for Coal Resources under High-Voltage Pylons and the Reinforcement for Pylons

Author:

Liu Hongyang,Du MingruiORCID,Zhang Boyang,Lin Zhibin,Liu Chengwei,Wang Feng

Abstract

The increasing use of high-voltage transmission wires requires more and more high-voltage pylons, and sometimes, constructing pylons in mining areas is very urgent. To ensure the safe operation of pylons, coal pillars with large side lengths are usually used to provide sufficient support; however, this results in a huge waste of coal. Eight high-voltage pylons are arranged on the ground surface corresponding to the location of working face 1110 of Sima Coal Mine in Shanxi Province, China, which cannot be mined by traditional methods. Taking this as the engineering background, the failure mode of high-voltage pylon is first analyzed. Using FLAC3D numerical simulations, the influence of five different mining plans on ground surface deformation in working face 1110 is evaluated, and the vertical settlement and horizontal deformation in different areas of the ground surface, as well as the variation law of horizontal strain and slope are analyzed. According to the numerical simulation results, the range of thickness-limiting mining or backfill mining in working face 1110 is shown in scheme 3, and the key regions in the mining process are determined. Secondly, the strengthening scheme of high-voltage pylons is designed, that is, the four foundations of high-voltage pylons are connected as a whole with steel supports and steel connectors so as to improve the structural strength of the high-voltage pylon. Finally, the position change in the foundation of high-voltage pylons was monitored for 22 consecutive months. The results show that the maximum settlement of the high-voltage tower foundation is 3.1 m, which is consistent with the actual mining thickness; The high-voltage pylon was stably moved, and the change in transmission line tension and total length was usually less than 1.0%. The combined mining scheme and foundation strengthening scheme can ensure the safe operation of high-voltage pylons and provide a new method for the stability control of ground buildings in coal mining subsidence area.

Funder

National Natural Science Foundation of China

Education Department of Guizhou Province Fund for Young Scientific and Tech-nological Talents

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3