A Photovoltaic System Fault Identification Method Based on Improved Deep Residual Shrinkage Networks

Author:

Cui Fengxin,Tu Yanzhao,Gao WeiORCID

Abstract

With the increasing installed capacity of photovoltaic (PV) power generation, it has become a significant challenge to detect abnormalities and faults of PV modules in a timely manner. Considering that all the fault information of the PV module is contained in the current-voltage (I-V) curve, this pioneering study takes the I-V curve as the input and proposes a PV-fault identification method based on improved deep residual shrinkage networks (DRSN). This method can not only identify single faults (e.g., short-circuit, partial-shading, and abnormal aging), but also effectively identify the simultaneous existence of hybrid faults. Moreover, it can achieve end-to-end fault diagnosis. The diagnostic accuracy of the proposed method on the measured data reaches 97.73%, is better than the convolutional neural network (CNN), the support vector machine (SVM), the deep residual network (ResNet), and the stage-wise additive modeling using multi-class exponential loss function based on the classification and regression tree (SAMME-CART). In addition, the possibility of the aforementioned method running on the Raspberry Pi has been verified in this study, which is of great significance for realizing the edge diagnosis of PV fault.

Funder

the Natural Science Foundation of Fujian, China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3