Experimental Investigation on Intermittent Operation Characteristics of Dual-Temperature Refrigeration System Using Hydrocarbon Mixture

Author:

Chen Qi,Li Yinsong

Abstract

An experimental rig of a zeotropic mixture separation condensation-based dual-temperature refrigeration cycle is built and the mixture R290/R600a is used as the refrigerant. Compared with a conventional cycle, the proposed refrigeration system demonstrates its application advantages under an on–off operation mode. Furthermore, the on–off periodic operation behaviors of this refrigeration system are experimentally investigated. The influence of a different refrigerant charge, a refrigerant mass fraction, a throttling valve opening, and ambient temperature are explored to evaluate the cyclic operation characteristics. The results reveal that the compressor average power for the duration of the compressor startup increases and the compressor duty cycle first declines then increases with the rise of the refrigerant charge. The average compressor during an on-period decreases from 104.5 W to 79.2 W and meanwhile the compressor duty cycles fluctuates between 72.1% and 96.9% as the R600a-charged concentration increases from 30% to 70%. The average power of the compressor during the on-period and the duty cycle are also sensitive to the freezer valve opening variation. Thus, the minimum energy consumption of 1.60 kWh·24 h−1 is achieved at the refrigerant charge of 300 g, a R600a-charged mass fraction of 50%, and a freezer throttling valve opening of 10%. A higher ambient temperature deteriorates heat transfer during condensation and increases the cabinets’ heat load, the compressor duty cycle, and eventually affects the daily power consumption. Generally, the present study offers an in-depth insight of cyclic operation characteristics of a separation condensation-based hydrocarbon mixture dual-temperature refrigerator under two parallel evaporators’ concurrent cooling process.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3