Mechanism of Electron Acceptor Promoting Propionic Acid Transformation in Anaerobic Fermentation

Author:

Jing Hongjing,Li Wenzhe,Wang Ming,Jiao Hao,Sun Yong

Abstract

To improve the conversion efficiency of propionic acid in the post-anaerobic fermentation of biogas slurry, the anaerobic fermentation process using biogas slurry with a high acid content was simulated in an anaerobic reactor at 35 ± 0.5 °C using sodium propionate as the sole substrate. The effects of different electron acceptors (NO3−, SO42− and Fe3+) on propionic acid conversion and the succession of microbial community structures were investigated. The results showed that the experimental group with the electron acceptor NO3− exhibited the best anaerobic fermentation effect, with a maximum propionate removal rate of 94%, which was 36% higher than the control group without an electron acceptor. The maximum methane production rate was 307.6 mL/g COD, an increase of 30% compared with the control group. Thauera, Aquabacterium, Desulfomicrobium, Clostridium_sensu_stricto_1, and other functional microorganisms were all enriched. The dominant functional genes related to redox reactions, such as K03711, K00384, and K03406, were highly enriched in the reactor when Fe3+ and NO3− were added. The study shows that adding an electron acceptor can enhance interactions between microorganisms, achieve efficient propionate conversion, and improve methane production in the system.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Special project of Heilongjiang Provincial Academy of science and technology cooperation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Utilization of Residu / Ampas Biogas Production from Bio-Slurry as Organic Fertilizer Resources

2. Poultry biogas slurry can partially substitute for mineral fertilizers in hydroponic lettuce production

3. Application of microbial consortia for biological treatment of post-fermentation effluents from biomethanization of sewage sludge and pig manure;Halat-Las;Przem. Chem.,2018

4. The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates

5. One-pot pyrolysis route to FeN-Doped carbon nanosheets with outstanding electrochemical performance as cathode materials for microbial fuel cell;Sun;Int. J. Agric. Biol. Eng.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3