Life Cycle Based Climate Emissions of Charcoal Conditioning Routes for the Use in the Ferro-Alloy Production

Author:

Surup Gerrit,Kaffash Hamideh,Ma Yan,Trubetskaya AnnaORCID,Pettersen Johan,Tangstad MereteORCID

Abstract

Renewable reductants are intended to significantly reduce CO2 emissions from ferro-alloy production, e.g., by up to 80% in 2050 in Norway. However, charcoals provide inferior properties compared to fossil fuel-based reductants, which can hamper large replacement ratios. Therefore, conditioning routes from coal beneficiation was investigated to improve the inferior properties of charcoal, such as mechanical strength, volatile matter, CO2 reactivity and mineral matter content. To evaluate the global warming potential of renewable reductants, the CO2 emissions of upgraded charcoal were estimated by using a simplified life cycle assessment, focusing on the additional emissions by the energy demand, required chemicals and mass loss for each process stage. The combination of ash removal, briquetting and high-temperature treatment can provide a renewable coke with superior properties compared to charcoal, but concomitantly decrease the available biomass potential by up to 40%, increasing the CO2-based global warming potential of industrial produced charcoal to ≈500 kg CO2-eq. t−1 FC. Based on our assumptions, CO2 emissions from fossil fuel-based reductants can be reduced by up to 85%. A key to minimizing energy or material losses is to combine the pyrolysis and post-treatment processes of renewable reductants to upgrade industrial charcoal on-site at the metallurgical plant. Briquetting showed the largest additional global warming potential from the investigated process routes, whereas the high temperature treatment requires a renewable energy source to be sustainable.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3