Operation Control and Performance Analysis of an Ocean Thermal Energy Conversion System Based on the Organic Rankine Cycle

Author:

Yang Xiaowei,Liu YanjunORCID,Chen YunORCID,Zhang Li

Abstract

The development and utilization of marine renewable energy is an important measure for achieving energy conservation, emissions reduction and carbon neutrality. Ocean thermal energy is the most stable energy among all the types of marine renewable energy. This paper built a simulation model of an ocean thermal energy conversion system based on actual device specifications by Aspen and MATLAB and put forward a corresponding control strategy. The opening control signal of the control valve at the turbine inlet was the condenser inlet pressure in this paper, and the frequency control of the working fluid pump depended on the evaporating pressure and flow rate of the working fluid. This paper analyzed the key operating parameter changes of the system under different working conditions. According to the analysis results, the turbogenerator in this system was able to generate 50 kW power for about 8 months per year. The highest net output power of the Organic Rankine Cycle was 47.3 kW; the highest cycle thermal efficiency was 3.2%.

Funder

the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) Pro-ject

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3