Dynamic Performance Evaluation of the Secondary Control in Islanded Microgrids Considering Frequency-Dependent Load Models

Author:

Rios Miguel AngelORCID,Pérez-Londoño SandraORCID,Garcés AlejandroORCID

Abstract

Performance analysis is challenging in modern power distribution networks due to the increasing penetration of distributed energy resources (DERs) interfaced by voltage source converters (VSCs). Parameter uncertainty, black-box models of the components, and low inertia are some of the issues that must be addressed. The latter can represent high vulnerabilities to sudden load changes in a microgrid (MG). Additionally, the islanded operation represents a challenge for inverter-based (DERs), where secondary control must regulate the microgrid frequency and voltage to its nominal values. When a secondary control strategy is implemented, it is necessary to validate its performance under several conditions. Most existing research papers focus on the microgrid’s small-signal and transient stability. At the same time, little has been done on the influence of the load model on voltage stability. This type of analysis is required to ensure an adequate transition between the grid-connected and stand-alone modes. This paper provides a voltage stability analysis of a microgrid, considering secondary control based on receding horizon and frequency-dependent load models. Simulation results demonstrate the robust performance of the secondary control and validate the importance of considering or adapting voltage stability indices to ensure adequate microgrid performance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3