Exploring Application of Ice Source Heat Pump Technology in Solar Heating System for Space Heating

Author:

Fang Lei,Wang Yujie

Abstract

A heat pump is an energy-effective technique to provide heating for buildings using available heat sources from the environment. Solar irradiation and ambient air are the most accessible heat sources among different heat sources; however, they are unstable for a day or several days. A large volume of the heat storage tank is usually required to provide a stable heating supply. As the most commonly used media for heat storage, water has a limitation on the heat storage temperature, i.e., above 0 °C, limiting its density of energy storage. This paper presents an experiment that evaluated the performance of a developed ice source heat pump used for assisting a solar heating system. The ice source heat pump can extract both sensible heat and the latent heat of water freezing, which doubles the density of energy storage and increase the heating output by 50%. The experiment results showed that the solar heating system tested could supply hot water at the highest temperature of 60 °C (with intense sun irradiation) and the lowest temperature of 40 °C (without sun irradiation). The min COP of the ice source heat pump was three, measured when the heat pump extracted heat from the ice water. This technology could be used for domestic heating with 50% reduced heat storage volume.

Funder

Bjarne Saxhofs foundation in Denmark

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3