Selected Environmental Impact Indicators Assessment of Wind Energy in India Using a Life Cycle Assessment

Author:

Verma Shalini,Paul Akshoy Ranjan,Haque NawshadORCID

Abstract

This study focuses on the life cycle assessment (LCA) of an onshore wind farm in India. The study is conducted on 10 Vestas 1.65 MW wind turbines situated in the Karnataka state of India. Following the ISO 14044 standard, SimaPro LCA software is used to model the process. The functional unit is chosen as 1 MWh sent out electricity. The results of the life cycle-based emissions of wind farm are compared with those of the coal power plant. The global warming potential is found to be 11.3 g CO2-eq/MWh for wind power, which is 98.8% lower than that for the coal power plant. A comparison of data available in SimaPro LCA software was carried out with data in GaBi software. There is a small difference between the two databases. This may be due to different boundary and inclusion of input items. Steel, aluminium, and concrete contributed 86%, 84%, 84% and 85% of total CO2, NOx, SO2 and PM2.5 emissions, respectively. Recycling the materials of a wind turbine at the end of its life can reduce the environmental impact. Higher capacity factors can increase the electricity generation with reduced environmental impact. A 22% increase in capacity factor can reduce environmental impact by 19%. In addition, the increase in the life of wind turbines reduces the environmental impact, as a wind turbine only has a few moving parts and requires minimum regular maintenance.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference61 articles.

1. Population Growth (Annual %)—India data.worldbank.org

2. Life Cycle Assessment of Italian Electricity Scenarios to 2030

3. Growth of Electricity Sector in India from 1947–2019,2020

4. Statistical Review of World Energy, 2019,2019

5. Human health and environmental impacts of coal combustion and post-combustion wastes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3