Investigations of the Mass Transfer and Flow Field Disturbance Regulation of the Gas–Liquid–Solid Flow of Hydropower Stations

Author:

Yan Qing1,Fan Xinghua2,Li Lin2ORCID,Zheng Gaoan3

Affiliation:

1. School of Economics and Management, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

3. College of Mechanical and Automotive Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Abstract

With the continuous depletion of fossil fuels, all countries attach importance to clean and sustainable development. The real-time state monitoring of multiphase flows is vital for enhancing hydropower station energy conversion. However, the material mass transfer mechanism and flow field disturbance regulation strategy faces significant challenges. To solve these problems, a computational fluid mechanics and discrete element method (CFD-DEM) coupling modeling and solution method based on a particle porosity model was proposed, and the mass transfer mechanism of gas–liquid–solid mixing flows was obtained under dynamic whirl intensity regulations. Combined with the user-defined function (UDF), the interphase forces and void ratios of fluids and particles were calculated to obtain the material mass transfer laws under dynamic disturbance regulations. The evolution characteristics of the particle flow pattern were tracked during the material mixing process. The results show that the mixed flow field had a high material transport efficiency under intensive whirl regulation, especially for the particle aggregation in the center of the reaction vessel. The maximum peak velocity and energy values of the particle transport process were 3.30 m/s and 0.27 × 10−3 m2·s−2. The higher whirl regulation improved the material transport process and conveying efficiency and enhanced the particle mixing effect in the reaction space. Relevant research results can provide theoretical references for material mass transfer mechanisms, dynamic regulation strategies, and particle flow pattern identifications and can also provide technical support for hydropower energy conversion.

Funder

Zhejiang Soft Science Research Program Project

National and Regional Research Project on German Speaking Countries of Zhejiang University of Science and Technology

Fundamental Research Funds for the Provincial Universities of Zhejiang University of Science and Technology

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3