A Multi-Objective Optimization Method for Maritime Search and Rescue Resource Allocation: An Application to the South China Sea

Author:

Dong Yaxin12,Ren Hongxiang12,Zhu Yuzhu1,Tao Rui12,Duan Yating12,Shao Nianjun3

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. Key Laboratory of Marine Simulation and Control, Dalian Maritime University, Dalian 116026, China

3. Nanhai Rescue Bureau of Ministry of Transport of PRC, Guangzhou 519060, China

Abstract

To effectively address the increase in maritime accidents and the challenges posed by the trend toward larger ships for maritime safety, it is crucial to rationally allocate the limited maritime search and rescue (MSAR) resources and enhance accident response capabilities. We present a comprehensive method for allocating MSAR resources, aiming to improve the overall efficiency of MSAR operations. First, we use long short-term memory to predict the number of future accidents and employ the K-medoids algorithm to identify the accident black spots in the studied area. Next, we analyze the multi-constraint conditions in the MSAR resource allocation process. A multi-objective integer programming model is constructed to minimize the response time and allocation cost. Finally, we use the non-dominated sorting genetic algorithm II (DNSGA-II) with Deb’s rules to solve the model, and we propose a multi-attribute decision optimization-based method for MSAR resource allocation. We found that the DNSGA-II exhibits better convergence and generates higher-quality solutions compared to the NSGA-II, particle swarm optimization (PSO), and enhanced particle swarm optimization (EPSO) algorithms. Compared with the existing MSAR resource emergency response system, the optimized scheme reduces the response time and allocation cost by 11.32% and 6.15%, respectively. The proposed method can offer decision makers new insights when formulating MSAR resource allocation plans.

Funder

National Science Foundation of China

Key Science and Technology Projects in the Transportation Industry

Applied Basic Research Program Project of Liaoning Province

Dalian Science and Technology Innovation Fund Project

Natural Science Foundation of Liaoning Province of China

Scientific Research Foundation of the Higher Education Institutions of Liaoning Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3