A Numerical Simulation Study and Effectiveness Evaluation on the Flow Field Effect of Trapezoidal Artificial Reefs in Different Layouts

Author:

Chen Xiaolong1,Che Xuan1,Zhou Yin1,Tian Changfeng1,Li Xinfeng1

Affiliation:

1. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China

Abstract

The combined release of artificial reefs in different quantities and arrangements leads to different flow field effects. This study designs a small trapezoidal artificial reef. To optimize the quantity and layout of these reefs, trapezoidal reefs in three different layouts were selected for analysis at five different velocity gradients (0.1, 0.5, 1.0, 1.5, and 2.0 m/s). The effects of disposal spacing and layout on the flow field effect of trapezoidal artificial reefs at different flow velocities were simulated using Ansys Fluent. According to the findings: after simulation, flow velocity could indirectly reflect the distribution of upwelling and back eddy, the scale and strength of upwelling increased as flow velocity increased, and the back eddy showed no obvious variation with flow velocity. In transverse combination mode, both the scale and strength of the upwelling and back eddy were maximized when the reef spacing was 1.0 L; in longitudinal combination mode, upwelling and back eddy reached maximum scale and strength when the disposal spacing of the reefs was 1.5 L of a single reef. In 2020, flow mapping and fishery surveys were carried out in the engineering pilot area. The results showed that the number and species of fish populations with 1.5 L spacing in the vertical combination method were significantly higher than those in other forms, and the structure of the fish reef was stable without any flipping or sliding phenomenon. This study can provide a theoretical reference for the design and the actual deployment of artificial reefs to improve the ecological restoration of the water.

Funder

Science & Technology Fundamental Resources Investigation Program

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference32 articles.

1. Effect on fishery resources multiplication of artificial reefs;Wang;Guangdong Agric. Sci.,2009

2. Research Progress of Artificial Reef Construction and Its Mechanism;Gao;Chin. Agric. Sci. Bull.,2023

3. Construction of marine ranching in China: Reviews and prospects;Yang;J. Fish. China,2016

4. Design and construction of marine ranch in my country;Wang;China Fish.,2011

5. Marine ranch: Carrying new hope for China’s fishery transformation;Pan;China Fish.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3