G-Net: An Efficient Convolutional Network for Underwater Object Detection

Author:

Zhao Xiaoyang1ORCID,Wang Zhuo2,Deng Zhongchao1,Qin Hongde2

Affiliation:

1. Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin 150001, China

2. Qingdao Innovation and Development Center, Harbin Engineering University, Qindao 266000, China

Abstract

Visual perception technology is of great significance for underwater robots to carry out seabed investigation and mariculture activities. Due to the complex underwater environment, it is often necessary to enhance the underwater image when detecting underwater targets by optical sensors. Most of the traditional methods involve image enhancement and then target detection. However, this method greatly increases the timeliness in practical application. To solve this problem, we propose a feature-enhanced target detection network, Global-Net (G-Net), which combines underwater image enhancement with target detection. Different from the traditional method of reconstructing enhanced images for target detection, G-Net realizes the integration of image enhancement and target detection. In addition, our feature map learning module (FML) can effectively extract defogging features. The test results in a real underwater environment show that G-Net improves the detection accuracy of underwater targets by about 5%, but also has high detection efficiency, which ensures the reliability of underwater robots in seabed investigation and aquaculture activities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of recent techniques in marine object detection: a review;Multimedia Tools and Applications;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3