Robust Underwater Acoustic Channel Estimation Method Based on Bias-Free Convolutional Neural Network

Author:

Wang Diya1234ORCID,Zhang Yonglin12,Wu Lixin12,Tai Yupeng12,Wang Haibin12,Wang Jun12,Meriaudeau Fabrice3,Yang Fan4ORCID

Affiliation:

1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Unité Mixte de Recherche, Institut de Chimie Moléculaire, Centre National de la Recherche Scientifique 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France

4. Laboratoire d’Etude de l’Apprentissage et du Développement, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5022, Université Bourgogne Franche-Comté, 21078 Dijon, France

Abstract

In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to diminished performance when confronted with new noise levels. In this research, a “bias-free” denoising convolutional neural network (DnCNN) method is proposed for robust underwater acoustic channel estimation. The paper offers a theoretical justification for bias removal and customizes the fundamental DnCNN framework to give a specialized design for channel estimation, referred to as the bias-free complex DnCNN (BF-CDN). It uses least squares channel estimation results as input and employs a CNN model to learn channel characteristics and noise distribution. The proposed method effectively utilizes the temporal correlation inherent in underwater acoustic channels to further enhance estimation performance and robustness. This method adapts to varying noise levels in underwater environments. Experimental results show the robustness of the method under different noise conditions, indicating its potential to improve the accuracy and reliability of channel estimation.

Funder

China Scholarship Council

Chinese Academy of Sciences

CAS Specific Research Assistant Funding Program

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3