Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis

Author:

Capetillo-Contreras Omar1ORCID,Pérez-Reynoso Francisco David2ORCID,Zamora-Antuñano Marco Antonio3ORCID,Álvarez-Alvarado José Manuel1ORCID,Rodríguez-Reséndiz Juvenal1ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico

2. Laboratorio Nacional de Investigación en Tecnologías Médicas (LANITEM), Centro de Ingeniería y Desarrollo Industrial (CIDESI), Querétaro 76125, Mexico

3. Centro de Investigación, Innovación y Desarrollo Tecnológico (CIIDETEC-UVM), Universidad del Valle de México, Querétaro 76230, Mexico

Abstract

The world population is expected to grow to around 9 billion by 2050. The growing need for foods with high protein levels makes aquaculture one of the fastest-growing food industries in the world. Some challenges of fishing production are related to obsolete aquaculture techniques, overexploitation of marine species, and lack of water quality control. This research systematically analyzes aquaculture technologies, such as sensors, artificial intelligence (AI), and image processing. Through the systematic PRISMA process, 753 investigations published from 2012 to 2023 were analyzed based on a search in Scopus and Web of Science. It revealed a significant 70.5% increase in the number of articles published compared to the previous year, indicating a growing interest in this field. The results indicate that current aquaculture technologies are water monitoring sensors, AI methodologies such as K-means, and contour segmentation for computer vision. Also, it is reported that K means technologies offer an efficiency from 95% to 98%. These methods allow decisions based on data patterns and aquaculture insights. Improving aquaculture methodologies will allow adequate management of economic and environmental resources to promote fishing and satisfy nutritional needs.

Publisher

MDPI AG

Reference76 articles.

1. Food and Agriculture Organization of the United Nations (2023, November 20). The State of World Fisheries and Aquaculture. Available online: https://www.fao.org/documents/card/en/c/ca9229en.

2. Value Chains and Market Access for Aquaculture Products;Ababouch;J. World Aquac. Soc.,2023

3. System Requirement Specification of Mobile Apps for Shrimp Farming in Shyamnagar of Bangladesh;Hasan;Am. J. Agric. Sci. Eng. Technol.,2021

4. FAO (2023, November 20). Fisheries and Aquaculture. Available online: https://www.fao.org/fishery/en/facp/GHA.

5. Chen, S., Wang, J., Che, B., and Sun, C. (2023). Ecological Footprint of Different Culture Modes of Penaeus vannamei in Northern China. Water, 15.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3