Simulating Erosive and Accretive Conditions in the Swash: Applications of a Nonlinear Wave and Morphology Evolution Model

Author:

Samaras Achilleas G.1ORCID,Karambas Theophanis V.2ORCID

Affiliation:

1. Department of Civil Engineering, Democritus University of Thrace, PC 67 100 Xanthi, Greece

2. Department of Civil Engineering, Aristotle University of Thessaloniki, PC 54 124 Thessaloniki, Greece

Abstract

This work presents a new model for surf and swash zone morphology evolution induced by nonlinear waves. Wave transformation in the surf and swash zones is computed by a nonlinear wave model based on the higher order Boussinesq equations for breaking and non-breaking waves. Regarding sediment transport, the model builds on previous research by the authors and incorporates the latest update of a well-founded sediment transport formula. The wave and morphology evolution model is validated against two sets of experiments on beach profile change and is afterwards used to test the performance of a widely-adopted erosion/accretion criterion. The innovation of this work is the validation of a new Boussinesq-type morphology model under both erosive and accretive conditions at the foreshore (accretion is rarely examined in similar studies), which the model reproduces very well without modification of the empirical coefficients of the sediment transport formula used; furthermore, the model confirms the empirical erosion/accretion criterion even for conditions beyond the ones it was developed for and without imposing any model constraints. The presented set of applications highlights model capabilities in simulating swash morphodynamics, as well as its suitability for coastal erosion mitigation and beach restoration design

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3