Tectonic Subsidence on the East China Coast Recorded by Magnetic Properties of Pliocene Red Clay in the Yangtze Delta

Author:

Liu Xianbin12,Chen Jing2,Xu Liping3,Sun Xiaoli4,Tan Lei1,Lv Minghao1,Song Jian1

Affiliation:

1. School of Resource and Environmental Engineering, Ludong University, Yantai 264025, China

2. State Key Laboratory for Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China

3. Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China

4. Shandong Zhengyuan Digital City Construction Company, Yantai 264025, China

Abstract

Thick red clay in northern China contains rich information about the uplifting of the Qinghai–Tibet Plateau, the drying process of Asian inland, the East Asian monsoon changes, and global cooling since 22 Ma. In comparison, the red clay widely distributed in southern China is generally much younger (<1 million years), thus limiting the paleoclimate and paleoenvironment reconstruction over a longer geological time. We conducted a comprehensive magnetic investigation on the Pliocene red clay of the core LQ11, located in the Yangtze Delta, to reveal its paleoclimate and paleoenvironment implications for the eastern China coast. Our results revealed that the Pliocene red clay in the Yangtze Delta has higher S-ratio and lower HIRM (Hard isothermal remanent magnetizations) values than Quaternary vermiculate red clay of hot–humid climate origin in southern China. This indicates a weaker transformation from maghemite to hematite during the process of pedogenesis. The lack of net-like white veins in the Pliocene red clay also indicates a relatively low intensity of pedogenesis. We believe that the Pliocene red clay, which is presently 250 m below the mean sea level, was formed in high-altitude topography before the Quaternary period, where paedogenic intensity was remarkably low. This finding shows rapid tectonic subsidence occurring on the eastern China coast since the late Pliocene and enriches the theoretical research on paleoenvironment reconstruction based on red clay.

Funder

National Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3