Assessing the Efficacy of a Bouchot-Style Shellfish Reef as a Restoration Option in a Temperate Estuary

Author:

Maus Charles1ORCID,Cottingham Alan1,Bossie Andrew12,Tweedley James R.1ORCID

Affiliation:

1. Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia

2. The Nature Conservancy, Australia, P.O. Box 57, Carlton South, VIC 3053, Australia

Abstract

Shellfish reefs around the world have become degraded, and recent efforts have focused on restoring these valuable habitats. This study is the first to assess the efficacy of a bouchot-style reef, where mussels were seeded onto wooden stakes and deployed in a hypereutrophic estuary in Australia. While >60% of translocated mussels survived one month, after ten months, only 2% remained alive, with this mortality being accompanied, at least initially, by declining body condition. Mussel survival, growth, body condition and recruitment were greater on the top section of the stake, implying that the distance from the substrate was important. More fish species inhabited the reefs (31) than unstructured control sites (17). Reefs were also colonised by a range of invertebrate species, including 11 native and six non-indigenous species. However, the number of individuals declined from 4495 individuals from 14 species in December 2019 to 35 individuals representing 4 species in March 2021, likely due to hypoxic bottom water conditions following unseasonal rainfall. Although the bouchot-style reefs were unable to sustain mussels and other invertebrates over sequential years, this approach has the potential to be successful if deployed in shallow water or intertidal zones, which are largely exempt from biotic and abiotic stressors characteristic of deeper waters in microtidal estuaries.

Funder

Recfishwest

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3