Power Prediction and Manoeuvring Study for an Inland Class Vessel

Author:

Islam Hafizul1ORCID,Rahaman Md. Mashiur2

Affiliation:

1. Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal

2. Department of Naval Architecture and Marine Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh

Abstract

The paper explores the propulsive power requirements and manoeuvring capabilities of a popular class of inland bulk carriers in Bangladesh. After the initial verification study, model-scale CFD simulations are performed in calm, open waters at different speeds to assess hull resistance. The resistance results are then extrapolated to full scale for calculating propulsion power requirements. Subsequently, manoeuvring simulations are performed using PMM motions to evaluate static drift, pure sway, and pure yaw scenarios to calculate manoeuvring coefficients. Following this, model-scale resistance simulations in restricted waters are performed to estimate the minimum power needed for propulsion in heavy monsoon currents based on common inland waterway dimensions in Bangladesh. Finally, full-scale simulations are performed in open water to investigate the scale effect on resistance (thus power) prediction. The study confirms that the installed power in the vessel is adequate for safe navigation within Bangladesh’s inland waters. Although model-scale CFD studies are generally unsuitable for resistance prediction, the study suggests that extrapolated results often offer conservative estimates for power prediction. In cases of resource limitation, these simulations can prove beneficial since conservative estimations somewhat ensure the vessel’s propulsion and manoeuvrability in extreme conditions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3