Numerical Analysis of Dynamic Response and Liquefaction Phenomena in Sandy Seabed Foundation around a Semi-Circular Breakwater under Wave Loading

Author:

Liu Junwei1,Jia Yunping1,Cui Lin1ORCID,Sun Honglei2,Lv Xu3,Asheghabadi Mohsen Saleh1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266525, China

2. Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310059, China

3. China Petroleum & Chemical Corporation, Changsha 410153, China

Abstract

Understanding the stability of the seabed foundation holds paramount significance in guaranteeing the safety and structural soundness of the breakwater alongside additional offshore structures. This study aimed to investigate the stability of a sandy seabed foundation around a semi-circular breakwater under wave loading in nearshore areas. A coupled numerical model of waves, a semi-circular breakwater, and the seabed was developed based on the OpenFOAM platform. The VARANS equations were used to govern the wave behavior. Meanwhile, the Biot’s partially dynamic model was employed to numerically simulate the seabed response considering both consolidation under self-weight and dynamic response under wave loading. The effects of various wave parameters, seabed properties, and the radius of the structure on the dynamic response of the seabed and the depth of liquefaction were investigated. The numerical results indicate that an increase in wave height, period, and permeability coefficient intensifies the dynamic response of the seabed soil. Furthermore, an increase in water depth weakened the soil’s dynamic response. There was a negative correlation between the radius of the semi-circular breakwater and the dynamic response. The influence of Poisson’s ratio on the dynamic response of the seabed was relatively small. Furthermore, a stronger dynamic pore pressure response was observed at the connection between the semi-circular breakwater and the rubble foundation.

Funder

Joint Funds of the National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

National Nature Science Foundation of China

Taishan Scholars Program

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3