Deciphering Preferences for Shelter Volume and Distribution by Coral Reef Fish, Using Systematic and Functional Grouping

Author:

Shabi Tamar12,Ziv Yaron3,Yosef Reuven1ORCID,Shashar Nadav13ORCID

Affiliation:

1. Marine Biology and Biotechnology Program, Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

2. The Interuniversity Institute for Marine Science, Eilat 88000, Israel

3. Faculty of Natural Sciences, Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

Abstract

Global degradation of coral reefs is reflected in the destruction of shelters in various environments and threatens the stability of marine ecosystems. Artificial shelters offer an alternative, but their design could be more challenging due to limited knowledge regarding desired inhabitants’ shelter characteristics and preferences. Investigating these preferences is resource-intensive, particularly regarding small shelters that mimic natural reef conditions. Furthermore, for statistical analysis in small shelters, fish abundance may need to be higher. We propose a method to characterize the species-specific shelter preferences using low-volume data. During a study conducted from January 2021 to April 2022, round clay artificial shelters (RAS) were deployed on an abandoned oil pier to examine a coral reef fish community. We recorded 92 species from 30 families and grouped them into systematic (families) and functional (dietary group) classes. Grouping enabled us to examine each group’s preference, while crossing these group preferences revealed species-specific preferences, which matched field observations. This approach proved effective in profiling the shelter preferences of 17 species while having limited resources. These profiles may later allow the establishment of ecological-oriented artificial reefs. Moreover, this method can be applied to other applications using other shelter designs, sizes, and research sites.

Funder

Privet donation by Rosa Puech and Peter Schechter

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3