Evaluation of Coconut Fiber in Corroded Reinforced Self-Healing Concrete Using NDT Methods

Author:

Zaki Ahmad12ORCID,Aprilia Nabilah Cantika1,Rosyidi Sri Atmaja P.1ORCID,Mahbubi Khairil2

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Universitas Muhammadiyah Yogyakarta, Bantul, Daerah Istimewa Yogyakarta, Yogyakarta 55183, Indonesia

2. Magister of Civil Engineering, Postgraduate Programme, Universitas Muhammadiyah Yogyakarta, Bantul, Daerah Istimewa Yogyakarta, Yogyakarta 55183, Indonesia

Abstract

The incorporation of natural fibers into concrete has recently emerged as a popular approach in the field of construction materials due to its sustainability and environmental friendliness. In comparison to artificial fibers, natural fibers are more cost-effective and widely available globally. Among the various natural fibers, coconut fiber (CF) stands out for its unique set of advantages. This study aims to investigate the mechanical properties and durability of coconut-fiber-reinforced self-healing concrete (CFR-SHC) in the context of corrosion resistance. Additionally, Bacillus subtilis bacteria (10% by mass) was incorporated into the CFR-SHC. The impact of ±50 mm long CF with varying contents of 0.25%, 0.5%, and 0.75% by mass was examined. Specimens were subjected to corrosion acceleration for 48, 96, and 168 h. Non-destructive testing (NDT) methods of Electrical Resistivity (ER) and Impact Echo (IE) were conducted to test the corrosion resistance. The experimental results demonstrate that CFR-SHC increased the compressive strength by 6% and the flexural strength by 40%. CFR-SHC also exhibits excellent resistance to corrosion, characterized by low inrush current, high ER value, and high IE frequency. The most favorable overall outcomes were observed for the CFR-SHC sample containing 0.5% of the cement mass.

Funder

Universitas Muhammadiyah Yogyakarta

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3