Affiliation:
1. Civil and Environmental Engineering, Portland State University, Portland, OR 97201, USA
Abstract
To optimally preserve and manage our civil structures, we need to have accurate information about their (1) geometry and dimensions, (2) boundary conditions, (3) material properties, and (4) structural conditions. The objective of this article is to show how imaging and image fusion using non-destructive testing (NDT) measurements can support structural engineers in performing accurate structural evaluations. The proposed methodology involves imaging using synthetic aperture focusing technique (SAFT)-based image reconstruction from ground penetrating radar (GPR) as well as ultrasonic echo array (UEA) measurements taken on multiple surfaces of a structural member. The created images can be combined using image fusion to produce a digital cross-section of the member. The feasibility of this approach is demonstrated using a case study of a prestressed concrete bridge that required a bridge load rating (BLR) but where no as-built plans were available. Imaging and image fusion enabled the creation of a detailed cross-section, allowing for confirmation of the number and location of prestressing strands and the location and size of internal voids. This information allowed the structural engineer of record (SER) to perform a traditional bridge load rating (BLR), ultimately avoiding load restrictions being imposed on the bridge. The proposed methodology not only provides useful information for structural evaluations, but also represents a basis upon which the digitalization of our infrastructure can be achieved.