Repeatability and Reproducibility of Pavement Density Profiling Systems

Author:

Leiva-Villacorta Fabricio1ORCID,Vargas-Nordcbeck Adriana2

Affiliation:

1. Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

2. National Center for Asphalt Technology, Auburn University, Auburn, AL 36830, USA

Abstract

The work conducted in this study was designed to establish achievable testing tolerances for non-destructive pavement density measurements using Density Profiling Systems (DPSs). Nine and six sensors were used to determine the precision of repeatability and reproducibility in the laboratory and the field, respectively. A minimum of six sensors (considered in this study as independent laboratories) were needed to comply with the minimum number of participants required in the current ASTM standard practice (ASTM E691). The methodology included the development of laboratory precision evaluation with a total of nine sensors and two different mixtures (9.5 mm fine-graded mix, 19.0 mm coarse-graded mix) compacted at four density levels (97%, 94%, 91%, and 88% of Gmm). For the field portion of this study, pavement sections built at the National Center for Asphalt Technology (NCAT) Test Track in 2021 served as experimental variables. These sections were built with fine-graded asphalt mixtures and open-graded mixes as wearing courses. Additionally, the pavement sections included three underlying materials: new asphalt (binder layer), milled asphalt surface, and granular base, with thicknesses ranging from 3.8 to 13.9 cm. Density profile testing was conducted at two locations: within the mat (center of the lane) and along the joint. Computed precision statements regarding dielectric values within and between laboratories were about double for field results compared to laboratory results. However, when converted to density, the statements were significantly below the reported statements for Bulk Specific Gravity and Vacuum Sealing in the laboratory and Nuclear and Electromagnetic density gauges in the field.

Funder

Minnesota Department of Transportation

Publisher

MDPI AG

Reference13 articles.

1. Coreless compaction assessment—MnDOT 2019 case studies;Hoegh;Transp. Res. Rec.,2020

2. Enhanced model for continuous dielectric-based asphalt compaction evaluation;Hoegh;Transp. Res. Rec.,2018

3. ASTM (American Society for Testing and Materials) (2020). Designation E691: Standard Practice for Conducting an Inter-Laboratory Study to Determine the Precision of a Test Method, ASTM.

4. Mickey, R.M., Dunn, O.J., and Clark, V.A. (2004). Analysis of Variance and Regression, John Wiley and Sons.

5. ASTM (American Society for Testing and Materials) (2020). Designation E177: Practice for Use of the Terms Precision and Bias in ASTM Test Methods, ASTM.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3